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Iterative renormalization group for anomalous dimension in a nonlinear diffusion process
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We construct a classical successive method, the Picard method in integral equation theory, to make an
iterative algorithm with the renormalization group~RG! approach to calculate the anomalous dimension in a
nonlinear diffusion equation. We find our result improves than the original RG work because we begin with the
«th RG solution, not the trivial fixed-point solution.
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Renormalization group~RG!, and in particular, its
quantum-field-theory implementation has provided us ess
tial tools for the description of phase transitions and criti
phenomena beyond mean-field theory@1–3#. Some years
ago, it had been found that there are also important app
tions in nonequilibrium phenomena and asymptotic analy
@4–5#. In particular, applications to calculate the anomalo
dimensions in the asymptotic behavior of the nonlinear p
tial differential equations have been discussed by Golden
and his colleagues, in the case of Barenblatt’s equation@6#,
modified porous medium equation@7#, and turbulent-energy
balance equation@8#, etc.

The equation discussed here is a one-dimensional no
ear diffusion equation

] tu5D]x
2u ~1!

with a discontinuous diffusion coefficientD51/2 for ] tu
.0 andD5(11«)/2 for ] tu,0. For the diffusion indicated
in Eq. ~1!, there is a certain time-dependent radiusr 0(t)
beyond which] tu,0 and behind which] tu.0. Thus, there
are different diffusion coefficients in the two regions. Th
equation, hereafter referred to as Barenblatt’s equation,
scribes the filtration of a compressible fluid through an el
tic porous medium which is irreversibly deformable@9#.
Here, we consider it with the initial condition

u~x,0!5
1

A2p l 2
expS 2

x2

2l 2D . ~2!

The formal solution to the Eq.~1! is

u~x,t !5E dy G~x2y,t !u~y,0!1
«

2 E0

t

dsE dy G~x2y,t

2s!Q@2]su~y,s!#]y
2u~y,s!, ~3!

whereG is the Green’s function
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G~x,t !5
1

A2pt
expS 2

x2

2t D ~4!

andQ is the Heaviside function corresponding to the disco
tinuity of D.

The reason that this RG treatment is potentially usefu
that the fixed point of the RG transformation is a self-simi
asymptotic solution of the equation@4#. In Goldenfeld’s
original work @6#, they construct a«-perturbation theory for
the equation, in the lowest order of« Eq. ~1! reduces to a
linear diffusion equation such as] tu(x,t)21/2]x

2u(x,t)50.
The fixed point of the simple equation, i.e. the long-tim
behavior of the problem isu;m0 /At exp(2x2 /2t). They
start from this trivial fixed point solution to«th calculation
and obtain the fixed-point solution of Eq.~1! is u
;A/(t1/21a)exp(2x2/2t) by the RG approach@6#, where the
anomalous dimensiona appears naturally.

On the other hand, the numerical result shows that so
time after the beginning of computation the following rel
tion holds:u;A/(t1/21a)exp(2x2/2t), i.e., the asymptotics
for Eq. ~1! rapidly converges to the above fixed-point sol
tion @9#. But the value of the anomalous dimensiona quan-

c-

FIG. 1. The anomalous dimensiona as a function of«. The
curve 1 is the numerical result from Barenblatt@9#; The curve 2 is
the RG result given by Goldenfeldet al. @6#; The curve 3 is our RG
result byPicard-like iteration.
©2002 The American Physical Society17-1
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titatively differs from the«th RG calculation~in Fig. 1, one
can see the difference between them explicitly! because the
initial step of their RG method is the trivial fixed-point so
lution of linear diffusion equation. Therefore, the Heavisi
function is kept in its zeroth-order approximatio
Q@2]su0(y,s)# in the «th RG calculation and the effect o
the Heaviside function on the final fixed-point solution
neglected. It is clear that we can improve the result of RG
beginning with«th RG because the initial step is closer
the true solution. This has a better chance of convergin
the true fixed-point solution, which we will see in the fo
lowing content.

To begin with the«th RG fixed-point solution, not the
trivial fixed-point solution and include the effect of th
Heaviside function in a certain approach, we can constru
classical successive method, the so-calledPicard method in
integral equation theory@10#, to make an iterative approac
possible@11#.

Our general strategy in this paper can be summarized
the following steps: First, we put the Heaviside function
its zeroth-order approximation

u~1!~x,t !5E dy G~x2y,t !u~y,0!1
«

2 E0

t

dsE dy G~x

2y,t2s!Q@2]su0~y,s!#]y
2u~1!~y,s!. ~5!

From it, we obtain the solutionu(1) and put it into the Heavi-
side function again to solve the equation secondly

u~2!~x, t !5E dy G~x2y,t !u~y,0!5
«

2 E0

t

dsE dy G~x

2y,t2s!Q@2]su
~1!~y,s!#]y

2u~2!~y,s! ~6!

and the iterative process can be continued to anynth step

u~n!~x,t !5E dy G~x2y,t !u~y, 0!1
«

2 E0

t

dsE dy G~x

2y,t2s!Q@2]su
~n21!~y,s!#]y

2u~n!~y,s!. ~7!

Using this trick, we can handle this problem step by step
include the effect of the Heaviside function.

In the first step, we start with

u0~x,t !5
Q0

A2p~ t1 l 2!
expF2

x2

2~ t1 l 2!G , ~8!

u~1!~x,t !5E dy G~x2y,t !u~y,0!1
«

2 E0

t

dsE dy G~x2y,t

2s!Q@2]su0~y,s!#]y
2u~1!~y,s!. ~9!

We posit a naive« expansion ofu

u~1!~x,t !5u0
~1!~x,t !1«u1

~1!~x,t !1¯ ~10!

The «th term can be calculated straightforwardly. As anti
pated,u1

(1) diverges ast→`. We find that
02611
y

to

a

th

o

-

u~1!~x,t !5
Q0

A2pt
expS 2

x2

2t D F12
«

A2pe
lnS t

l 2D G
1nonsingular terms1O~«2!. ~11!

To deal with the divergence, we use the RG approach in
duced by Goldenfeldet al. @5#. Hence, we obtain

uR
~1!~x, t !5

A

t1/21a~1! expS 2
x2

2t D ~12!

with the anomalous dimension

a~1!5
«

A2pe
1O~«2!, ~13!

where the subscriptR denotes the renormalized quantity. W
notice that it is just the lowest RG result which has be
obtained by Goldenfeldet al. before @6#. Obviously, we
would find that in their RG approach, the Heaviside functi
is put in its zeroth-order approximation.

Next, in the second step, we can put Eq.~12! into the
Heaviside function, now we have

u~2!~x,t !5E dy G~x2y,t !u~y, 0!1
«

2 E0

t

dsE dy G~x

2y,t2s!Q@2]suR
~1!~y,s!#]y

2u~2!~y,s!. ~15!

The calculation differs slightly from the above with

u~2!~x,t !5
Q0

A2pt
expS 2

x2

2t D F1

2
«A112a~1!

A2p exp~112a~1!!
lnS t

l 2D G
1nonsingular terms1O~«2!. ~16!

After the RG argument, the form of the solution remai
unchanged

uR
~2!~x,t !5

A

t1/21a~2! expS 2
x2

2t D , ~17!

where the anomalous dimension changes into

a~2!5
«A112a~1!

A2p exp~112a~1!!
. ~18!

Using the principle of mathematical induction, it is ea
to prove that

a~n!5
«A112a~n21!

A2p exp~112a~n21!!
. ~19!

Suppose that it is true forn5m21, that is to say
7-2
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a~m21!5
«A112a~m22!

A2p exp~112a~m22!!
. ~20!

Now, we substitute them21th solution

uR
~m21!~x,t !5

A

t1/21a~m21! expS 2
x2

2t D ~21!

into themth equation

u~m!~x,t !5E dy G~x2y,t !u~y,0!1
«

2 E0

t

dsE dy G~x

2y,t2s!Q@2]suR
~m21!~y,s!#]y

2u~m!~y,s!.

~22!

The same approach as above is repeated here and yield

u~m!~x,t !5
Q0

A2pt
expS 2

x2

2t
D F 1

2
«A112a~m21!

A2p exp~112a~m21!!
lnS t

l 2D G
1nonsingular terms1O~«2!. ~23!

With RG, we can have

uR
~m!~x,t !5

A

t1/21a~m! expS 2
x2

2t D ~24!

with

a~m!5
«A112a~m21!

A2p exp~112a~m21!!
. ~25!

We have proved that it is true form51 andm52. Thus, it is
true for anym.
a

ep

or

Y.

ue
s

02611
If the iterative process is convergent, the limit exis
Writing

lim
n→`

a~m!5a~`!, ~26!

then one has

a~`!5
«A112a~`!

A2p exp~112a~`!!
. ~27!

Two questions are to be considered. First, does the sequ
converge and second, if it does converge, does it converg
the solution of the integral equation? We will discuss t
convergence, the error made in replacing the final re
uR(x,t) by thenth approximationuR

(n)(x,t) and the solution
uniqueness in a separate paper.

The above equation~27! can be solved numerically, an
we can compare our result with Both Goldenfeld’s@6# and
Barenblatt’s@9# in the same picture as Fig. 1. It is obviou
that our result improves than the lowest RG approach wh
has been done by Goldenfeldet al. @6#.

In summary, we use aPicard-like iterative process to im-
prove the calculation of RG for the anomalous dimension
Barenblatt’s equation. We illustrate our proposal with t
Barenbaltt’s equation, however, it may be useful in study
the more interesting physical situations@12#, such as the gen
eralized porous medium equation

] tu5DDdun11, ~28!

which models a variety of nonequilibrium phenomena
inter alia, fluid dynamics, plasma physics, and gas dynam
depending on the value ofn @13#.

G.C. is supported by the National Science Foundation
China ~No. 19875047!. The authors would like to thank Dr
Liu Jian Wei for his help in this paper. One of the autho
~T.T.! gratefully thanks Professor N. Goldenfeld for consi
eration of his work.
B
v.

v.

-

-

@1# N. N. Bogoliubov and D. V. Shirkov,Introduction to the
Theory of Quantized Fields, 3rd ed.~Wiley, New York, 1980!.

@2# J. Zinn-Justin,Quantum Field Theory and Critical Phenomen
~Clarendon, Oxford, 1989!.

@3# One can find a series of review articles on RG in Phys. R
344, 155 ~2001!.

@4# N. Goldenfeld,Lectures on Phase Transitions and the Ren
malization Group~Addison-Wesley, Reading, MA, 1992!; L.
Y. Chen, N. Goldenfeld, and Y. Oono, Phys. Rev. Lett.73,
1311~1994!; G. C. Paquette, L. Y. Chen, N. Goldenfeld, and
Oono, ibid. 72, 76 ~1994!; Y. Oono, Int. J. Mod. Phys. B14,
1327 ~2000!.

@5# The RG method developed by Goldenfeld and his colleag
has been applied by many authors to quite a wide clas
problems successfully. G. Caginalp, Phys. Rev. E53, 66
~1996!; R. Graham, Phys. Rev. Lett.76, 2185 ~1996!; K. I.
.

-

s
of

Matsuba and K. Nozaki, Phys. Rev. E56, 4926 ~1997!; S.
Goto, Y. Masutomi, and K. Nozaki, Prog. Theor. Phys.102,
471 ~1999!; T. Maruo, K. Nozaki, and A. Yosimori,ibid. 101,
243 ~1999!; C. Itoi and H. Mukaida, Phys. Rev. E60, 3688
~1999!; S. I. Ei, K. Fujii, and T. Kunihiro, Ann. Phys.~Leipzig!
280, 236 ~2000!; O. Pashko and Y. Oono, Int. J. Mod. Phys.
14, 555 ~2000!; K. Nozaki, Y. Oono, and Y. Shiwa, Phys. Re
E 62, 4501~2000!.

@6# N. Goldenfeld, O. Martin, Y. Oono, and F. Liu, Phys. Re
Lett. 64, 1361~1990!.

@7# L. Y. Chen, N. Goldenfeld, and Y. Oono, Phys. Rev. A44, 6544
~1991!.

@8# L. Y. Chen and N. Goldenfeld, Phys. Rev. A45, 5572~1992!.
@9# G. I. Barenblatt,Scaling, Self-similarity, and Intermediate As

ymptotics~Cambridge University, Cambridge, England, 1996!.
@10# F. G. Tricomi, Integral Equations, Pure and Applied Math
7-3



n

he
he
e

h-

TAO TU, G. CHENG, AND HUA SHENG PHYSICAL REVIEW E65 026117
ematic~Interscience, New York, 1957!, Vol 5.
@11# We have already proposed a method about it, the details ca

found in our article C. Chen and G. Cheng, J. Math. Phys.39,
1589 ~1998!. The important difference between them is t
change of the initial fixed-point solution explanation and t
relation to the RG approach, which are not clear in the form
02611
be

r

paper.
@12# Tao Tu ~unpublished!.
@13# For a brief summary, see e.g. W. L. Kath, Physica D12, 375

~1984!; D. G. Aronson, inNonlinear Diffusion Problems, ed-
ited by A. Fasano and M. Primicerio, Lecture Notes in Mat
ematics, Vol. 1224~Springer-Verlag, Berlin, 1986!.
7-4


